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Abstract—This paper investigates a robust and effective au-
tomatic stress detection model based on human vocal features.
Our study experimental dataset contains the voices of 58 Greek-
speaking participants (24 male, 34 female, 26.9±4.8 years old),
both in neutral and stressed conditions. We extracted a total of
76 speech-derived features after extensive study of the relevant
literature. We investigated and selected the most robust features
using automatic feature selection methods, comparing multiple
feature ranking methods (such as RFE, mRMR, stepwise fit) to
assess their pattern across gender & experimental phase factors.
Then, classification was performed both for the entire dataset,
and then for each experimental task, for both genders combined
and separately. The performance was evaluated using 10-fold
cross-validation on the speakers. Our analysis achieved a best
classification accuracy of 84.8% using linear SVM for the social
exposure phase and 74.5% for the mental tasks phase using
the gaussian SVM classifier. The ordinal modelling improved
significantly our results, yielding a best on-subject basis 10-
fold cross-validation classification accuracy of 95.0% for social
exposure using gaussian SVM and 85.9% for mental tasks using
the gaussian SVM. From our analysis, specific vocal features
were identified as being robust and relevant to stress along with
parameters to construct the stress model. However, it is was
observed the susceptibility of speech to bias and masking and
thus the need for universal speech markers for stress detection.

Index Terms—stress, voice, speech, pairwise transformation,
Mel cepstral coefficients, emotion recognition, affective com-
puting, biosignals, feature selection, mRMR, hyperparameter
optimization

I. INTRODUCTION

Speech is the main medium of human verbal communi-
cation, able to express linguistic (words) and paralinguistic
information such as thoughts, ideas, moods and emotions
in everyday life. The vocal behaviour parameters reflect the

affective state as emotional changes activate physiological
processes in the central and peripheral nervous system which,
in turn, modulates the voice production process.

The mechanism of human speech production is described in
[1] [2] and is presented in Figure 1. The vocal characteristics
can be categorized into three components, namely speech ex-
citation (source), vocal tract (filter-system) and speech signal
(output). The emotional physiological response affects the first
component by increasing tension in the vocal fold muscles, the
second component by changing of the vocal tract articulators’
position and, consequently, the third component due to its
linkage with the other two components.

Fig. 1. Representation of the human speech production mechanism. It can
be considered as a system with 3 possible inputs (periodic pulses or noise or
impulse). These are modulated in the vocal tract by the articulators (system)
producing the output speech waveform. Figure taken from [2].

Subsequently, stress conditions may cause variations to
speech characteristics in relation to speech in neutral condi-



tions [3]. A scientific area called Voice Stress Analysis (VSA)
has been established to differentiate normal from stressed
voice signals by analyzing nonverbal aspects of speech such
as intonation, voice quality, prosody, rhythm, and timing
(pausing) [4].

The aim of this study is the identification of the most
effective voice-derived features on stress detection and the
construction of a reliable computational model for the antici-
pation of stress-related states.

The research topics investigated in this study can be sum-
marized in the following aspects

1) identify the most robust and relevant voice features that
efficiently represent stress state and discriminate control
and stress states.

2) investigate the involvement of each voice feature in the
stress model.

3) investigate the features’ importance differences between
genders.

4) investigate the construction of a stress model,able to an-
ticipate stress states with efficient discriminatory ability.

II. RELATED WORK

In [5], an extensive review of theoretical and empirical
models on human speech was provided, while in [6] the effects
of stress on human voice were investigated.

The vocal fundamental frequency f0 is a commonly used
stress indicator. A great number of studies have been used
it as a feature for stress detection, many of them concluding
that stress conditions lead to an increase of the f0 [1]. In life-
threatening situations, the pitch increases were found to be
the highest, often redoubled [7]. Also, there is a significant
pitch increase during Lombard speech [8]. There are cases
though where an f0 decrease has been observed, for instance,
[9] noted an increase in f0 in 60.8% and a decrease in 13.6%
of the speakers under physical stress, while 25.5% shown
no change. Applying Linear Discriminant Analysis (LDA)
in conversations from emergency call center databases [10]
observed a systematic increase in pitch (more than one octave),
as well as a shift in the f0 contour. Their classification accuracy
was 80% (84% for stressed males) and concluded that mean
f0, min f0, and f0 variation are, among others, significant stress
indicators.

A very commonly used set of features for human speech
analysis and recognition, Mel-Frequency Cepstral Coefficients
(MFCC), were first introduced by [11]. MFCCs are a popular
way to represent sound in a parametric way, and they are
used as features in speech recognition as described in [12].
Essentially, they comprise a representation defined as the real
cepstrum of a windowed short-time signal derived from the
FFT of that signal [13]. MFCCs also seem to correlate with
fatigue and sleep deprivation [7]. In [14], it was showed that
their 3rd order polynomial SVM classifier performed better
than humans in classification accuracy by 44.42% with a total
accuracy of 86% in a cross-language (Chinese & English na-
tive speakers) and cross-gender study. They used 560 acoustic
features MFCC & TEO (pitch considered to be less important).

The differences across languages were very small, whereas the
accuracy across genders decreased by 28.18%. In [15] found
f0 not to be a good indicator of stress when used on its own,
though it improved a little the classification accuracy when
combined with MFCC features with SVM (92.6 ± 1.6% over
92.4 ± 0.6%).

In the audio spectrum, the amplitudes decrease as the
frequencies increase, so its shape tilts [16]. This spectral slope
is approximated by linear regression [17] and has been used
by some studies as a discriminatory feature for stress detection
[18]. [19] consider the glottal structure to be subjective, less
observable, but still measurable. [20] extracted the slope of the
glottal source signal (more specifically, the three most probable
slopes of speech spectrum, along the corresponding glottal
slopes), as well the pitch standard deviation, and achieved
an accuracy score of 92.06% using Random Forest classifier.
Slope features were found to contribute more than f0 and their
main advantage is that they are not as easy to manipulate, and
thus the subjects cannot easily conceal their stress [20].

Vowel production is affected by psychological disorders
such as depression, PTSD, and suicidality by affecting speech
production mechanisms (for example, increasing tension in
vocal cords and vocal tract) [21]. Studies show that the
f1/f2 area, defining the vowel space, decreases as the stress
decreases [22] [23], while some other studies find less sig-
nificant vowel change during stress [24] [25]. In a study on
Daxi Hakk Chinese speakers, it was found that on stressed
conditions there was a significant definite expansion of vowel
space by increasing the f2 for front vowels (especially /i/) and
decreasing the f2 for back vowels (especially /o/) [26]. The
results in [27] show that mean f1 (for /a/ /i/ and /u/) was
significantly increased for highly aroused emotions, while at
the same time mean f2 is significantly reduced (for /a/). In
the same study, they also pointed out that positive emotions
(amusement, relief, pride, interest) resulted in higher mean f2
than negative emotions (anxiety, fear, sadness, despair).

In [28], both speech and gestures features were utilized,
in order to recognize stress states by the modulation of
either speech and gestures (e.g. intonation for speech, speed
and rhythm for gestures). In [29], pitch, intensity, formants,
long term averaged spectral features and spectral features
were selected for the automatic stress detection in emergency
(telephone) calls leading to minimizing error rate to 4.2%.

III. EXPERIMENTAL DATASET AND ACQUISITION
PROTOCOLS

A. Acquisition protocol for stress recognition

An experimental protocol was designed and conducted to
investigate vocal characteristics in stress conditions. Each of
the participants was seated in front of a computer monitor
which presented the stressful stimuli. Voices were recorded
with a microphone attached to the subject’s chest.

The experiment included neutral tasks (used as reference)
and stressful tasks in which stress conditions were simulated
and induced employing different types of stressors. These
stressors were categorized into 4 different phases: social



exposure, emotional recall, mental workload tasks, stressful
videos presentation. The experimental tasks along with their
duration and affective state are presented in Table I.

TABLE I
EXPERIMENTAL TASKS EMPLOYED IN THIS STUDY

# Experimental task Duration Affective
(min) State

Social Exposure
1 1.1 Neutral (reference) 1 N
2 1.2 Baseline Description 2 N
3 1.3 Interview 2 S
Emotional recall
4 2.1 Neutral (reference) 2 N
5 2.2 Recall stressful event 2 S
Mental Tasks
6 3.1 Reading letters/numbers (reference) 2 N
7 3.2 Stroop Colour-Word Test (SCWT) 2 S
8 3.3 PASAT Task 2 S
Stressful videos
9 4.1 Calming video 2 R
10 4.2 Adventure video 2 S
11 4.3 Psychological pressure video 2 S
Note: Intended affective state N:neutral, S:stress, R:relaxed)

The phases, as shown in the table, were “Social exposure”
(2 neutral and 1 stress task), “Emotional recall” (1 neutral and
1 stress task), “Mental tasks” (1 neutral and 2 stress tasks), and
“Stressful stimuli” (1 relaxed and 2 stress tasks). In total there
were 4 neutral states, 1 relaxed state, and 6 stressed states.
Each phase started with a neutral/relaxed condition, acting as
a baseline for the stressful tasks that followed.

The first phase (social exposure), included an interview
where the participant was asked to describe himself.

In the second phase (emotional recall) participants were
asked to recall in their memory and relive a traumatic stressful
situation of their past life and act as it was happening this time.

The third phase (mental tasks), assessed the cognitive load
of the participants with tasks that require mental effort. The
first task was the Stroop color-word test (SCWT) [30], in
which the participant is asked to read a color name inked
with dissimilar color (ex. the word “BLACK” inked with red
color). The second task was Paced Auditory Serial Addition
Test (PASAT) [31], an arithmetic operation test for attentional
processing assessment.

The fourth phase (stressful stimuli), included the presen-
tation of 2-min video clips, with calming content for the
induction of a relaxed state and intense content (adventure
and action scenes involving heights, scenes with burglary and
car accidents) for the induction of a stressed state.

B. Study dataset

The experimental dataset used in this study is described in
[32]. The experiment took place at the premises of the FORTH
research institute. It contains the voices of 58 Greek-speaking
volunteer participants (34 females, 24 males) whose ages at the
time of the recording were 26.9±4.8 years old. Each participant
performed 11 total tasks (4 neutral, 6 stressed and 1 relaxed

states) as shown in Table I. The study was approved by the
FORTH Ethics Committee (FEC). All participants provided
informed consent.

A neutral condition was presented at the beginning of each
phase of the experiment which was used as a baseline for the
subsequent stressful tasks. For the voice experiments of the
current study, only the first (social exposure) and the third
(mental tasks) phases were used as the other phases don’t
contain participants voices. This means, that for the social
exposure, the tasks 2 (neutral) and 3 (stress condition) and
for the mental tasks, the tasks 6 (neutral) and 7,8 (stress
conditions) were used.

IV. METHODS

A. Speech signal preprocessing

Speech segments in the audio recordings were manually
detected and isolated from silent segments using the Praat
software [33] (see Fig. 2). All feature values calculated along
a speech segment were averaged to produce a single feature
vector for each segment.

Fig. 2. Speech segments in each audio recording were manually isolated from
silent segments using Praat.

B. Vocal features extraction

After the preprocessing and the voiced section segmenta-
tion, vocal features were extracted included prosodic, glottal
source, and spectral envelope features. Prosodic features are
the fundamental frequency (f0), formants (f1-f5), Voice activ-
ity detection (VAD) [34], and the voiced/unvoiced boundaries
(VUV). Voice quality features include Normalized amplitude
quotient (NAQ), Quasi-open quotient (QOQ), the ratio of the
first two harmonics of the glottal source spectrum (H1/H2), the
parabolic spectral parameter (PSP), the estimation of maxima
dispersion quotient (MDQ), the spectral slope (peakslope) and
the shape parameter of the Liljencrants-Fant model of the
glottal pulse dynamics (Rd). In total, 80 vocal features were
extracted, and they are presented in Table II.

C. Feature selection

After constructing the feature matrix, we perform a set of
feature selection algorithms to determine the most relevant



TABLE II
SPEECH-DERIVED FEATURES EXTRACTED AND USED IN THIS STUDY

Feature Description

f0 Fundamental frequency
f1–f5 Formants f1–f5
VUV Voiced / unvoiced (voicing boundaries)
VAD Voice Analysis Detection
NAQ Normalized amplitude quotient
QOQ Quasi-open quotient
H1/H2 The first 2 harmonics ratio
PSP Parabolic spectral parameter
MDQ Maxima dispersion quotient
Peak Slope wavelet response spectral tilt/slope
Rd Estimation of the shape parameter of the

Liljencrants-Fant (LF) glottal model
creak Creaky voice detection algorithm
MCEP (0-24) Mel cepstral coefficients

(MCEP0,MCEP1,..MCEP24) (25 features)
HMPDM (0-24) Harmonic model and phase distortion mean
HMPDD (0-12) Harmonic model and phase distortion

deviations

features for the detection task. The feature selection is car-
ried out by minimizing the classification error of an SVM
classifier using 10-fold cross-validation. Many feature ranking
methods were utilized and compared in this study, including
mRMR, step-wise fit, and Wilcoxon rank-sum test. We used
the minimum Redundancy Maximum Relevance (mRMR) [35]
optimizing in terms of the Mutual Information Quotient (MIQ)
criterion [36].

Assuming that q features Zq = z1:N,1:q i = 1, .., q are
selected from the total M of the G features matrix and these
features form the subset Zq for selecting the next best feature,
it can be calculated by the equation

max
zj∈x−ZM

I (zj ; c)− 1

M − 1

∑
zj∈ZM

I (zj ; zi)


where the class labels are C and I(x; y) is the mutual

information (MI) function. The algorithm selects and ranks
the most relevant to the class label and the least redundancy
with the previously selected features.

The stepwise regression method [37] begins with an initial
model, and then, modifies the model in successive steps by
adding or removing features. In each step, the p-value of an
F-statistic is computed to test whether a potential feature has
a zero coefficient if added or removed from the model.

The Wilcoxon rank-sum test (also known as Mann-Whitney
test) [38] is a non-parametric statistical method testing the hy-
pothesis that for two random variables X and Y, the probability
of X > Y equals the probability of Y > X

D. Ordinal transformation and analysis

As ordinal regression is performed, it is appropriate to
take into account each participant’s personalized values in
the neutral state. This period corresponds to each subject’s
baseline, and using the mapping transformation to rankings

[39] generates a common reference to each feature across
subjects, providing data normalization.

In this case, the problem of stress detection can be viewed
as a ranking problem. In order to transform into a 2-class
classification problem (classes: no stress vs stress), we used the
pairwise transformation introduced in [39] [40]. The pairwise
transformation which maps the features matrix X (described
in IV-B) and the class labels Y is described by the equation

T :

{
X ′ = X (ti)−X (tj)
Y ′ = sign {Y (ti)− Y (tj)}

}
,∀ corresponding i, j

where i, j refer to the indices of neutral and stress states
respectively with all possible pairs of a specific subject of
the feature matrix. The overall transformation procedure is
described in Algorithm 1.

Algorithm 1: Pairwise transformation used in this
study
Input:
X – feature matrix [cases x features]
Y – classes [1: non-stress, 2: stress]
Output:
X ′ – pairwise transformed feature matrix
Y ′ – classes [-1,1]
for each extracted data do
X1, X2 feature vectors of class Y1, Y2 respectively
Find indices i, j of all permutations without repetition
of X1, X2

for each pair i, j do
X ′ = X1(i)−X2(j)
if Yi > Yj then Y ′ = 1
if Yi < Yj then Y ′ = −1
end
end

This transformation creates preference pairs of feature vec-
tors X(i) −X(j) = [f1(i) − f1(j), . . . , fM (i) − fM (j)] and
their labels sign{Y (i)− Y (j)}. If Y (i) > Y (j) then X(i) �
X(j) and this preference pair is a positive instance, otherwise,
it is a negative instance X(i) ≺ X(j). The preference pairs
and their corresponding labels after transformation can be con-
sidered as instances and labels in a new classification problem,
which then can be performed with traditional classification
schemes. This step is significant for the subsequent analysis
as it addresses the inter-subject variability, taking into account
the baseline of each subject of the neutral tasks.

E. Stress detection model and machine learning classification

Stress detection can be seen as a binary classification
problem, i.e., classify a voiced segment into two classes based
on whether or not stressful conditions occur during this time
interval. Each voiced segment was assigned to a no stress
or stress class based on the experimental task. The features
produced by the feature extraction phase (Section IV-B were
fed into classification schemes in order to provide automatic
stress detection. The objective is to design a stress detector



for mapping Xi to yi which can be formulated as a binary
classification problem. In this study, we employ a plethora of
classification schemes (22 in total) which are listed in Table
III.

TABLE III
CLASSIFIERS USED IN THIS STUDY

Classifier Parameters

SVM1 kernel:linear, scale:auto, constrain:1
SVM2 kernel:polynomial(2nd), scale:auto, constrain:1
SVM3 kernel:polynomial(3rd), scale:auto, constrain:1
SVM4 kernel:Gaussian, scale:2.1, constrain:1
SVM5 kernel:Gaussian, scale:8.5, constrain:1
SVM6 kernel:Gaussian, scale:34, constrain:1
LDA DiscrimType: diaglinear
QDA DiscrimType: diagquadratic
KNN1 neighbor:1 (Euclidean)
KNN2 neighbor:10 (Euclidean)
KNN3 neighbor:100 (Euclidean)
KNN4 neighbor:10 (cosine)
KNN5 neighbor:10 (Minkowski p=3)
KNN6 neighbor:10 (Eucl. dist. squared inverse distance weight)
TREE1 binary decision tree (max split 100)
TREE2 binary decision tree (max split 20)
TREE3 binary decision tree (max split 4)
ENS1 Ensemble Boosted Trees (AdaBoost max split 20)
ENS2 Ensemble Bagged Trees (random forest max split 16681)
ENS3 Ensemble random discriminant subspace (min 1 – max 36)
ENS4 Ensemble random KNN subspace (min 1 – max 36)
ENS5 Random undersampling Boosted Trees (max split 20)

F. Hyperparameter optimization

After an initial assessment of the out-of-the-box perfor-
mances achieved by the different classifiers used, it can be
deduced that the SVM classifiers, and particularly the ones
with the Gaussian (SVM5) & polynomial of 3rd order (SVM3)
kernels, consistently outperform the others in all scenarios.
To try to further improve their performance, we tweak their
hyperparameters (i.e., the classifier configuration variables)
using grid search, initially on a larger scale search (10−2 to
102) followed by a smaller scale search centered on the best
results of the first search. The hyperparameters optimized for
SVM are kernel scale and box constraints. We also perform
optimization for an ensemble classifier (AdaBoost), using the
parameters learning cycles and max split.

RESULTS

The proposed methodology, as described in section IV, was
applied to the study’s voice dataset.

G. Evaluation of features ranking

Various ranking methods were compared in terms of their
classification performance and the number of features used.
Depending on the used method, speaker gender, and the se-
lected task, the ranking results differ. So, the different methods
used don’t converge to the same selected features. Thus, to
assess the importance of each feature based on all the ranking
methods, we calculated a score that is the weighted sum of
all occurrences of that feature in a specific ranking position
multiplied by the weight of the position. The scoring formula

for each feature gj from the feature set G with j features is
the following:

score (gj) =

(
1

scoremax

) N∑
i=1

cji × wi

where i is the index of the ranking position, N is the number
of ranking positions (which equals the number of features), cji
is the number of times the feature j was ranked in position i
and wi = [N,N − 1, ..., 1] is the weight of that position. The
sum is normalized by the maximum possible score.

Fig. 3. Top-10 ranking features for all participants (upper figure), female
speakers (middle figure) and male speakers (lower figure).

The maximum possible score is defined as

scoremax = C × w1 = C ×N

where C is the number of ranking methods tested. Essen-
tially, scoremax is the score a feature would get if it ranked
in the first position for all ranking methods.

Using the scoring method described above, we can assess
the importance of the features when used for both genders, or
male and female separately. Despite the output differences of
each ranking method, some features seem to consistently score
higher than others regardless of the method used indicating
their importance.

It can be observed, as we can see in Figure 3, that
MCEP0, vowel space, VAD, and peak slope appear to be
consistently among the most significant features across the



different conditions (gender, tasks). The features NAQ, MDQ,
HMPDD9 appear to be significant mainly for female voices
(ranking 0.82, 0.77, and 0.64 respectively) while the same
features rank a lot lower for male speakers (0.43, 0.37, and
0.17 respectively). On the other hand, the HMPDM13 seems
to be important for male speakers (0.73) but its score is low
for female speakers (0.39). Formants f1-f5 seem to have very
low importance in all cases, while the fundamental frequency
f0 appears to be significant for male participants (top 4th

position).

H. Feature and optimized model determination

Various feature selections methods (described in section
IV-C) and classification schemes (listed in Table III) along
with their hyperparameter optimization (described in section
IV-F) were tested in terms of their classification accuracy
for the whole dataset. This procedure adjusted the model
parameters (features selection method, selected features, clas-
sifiers hyperparameters) for the analysis. The most effective
combinations for all the experimental tasks are presented in
Table IV.

TABLE IV
SELECTION CLASSIFICATION ACCURACIES (10-FOLD CROSS

VALIDATION) WITH FEATURE SELECTION AND
CONVENTIONAL ML TECHNIQUES

Combination No of
features
selected

Classification
Accuracy

(%)

Stepwisefit, ENS1 45 94.36
Wilcoxon, SVM5 81 91.24
Svmrfe_ori, SVM3 55 91
Svmrfe_ker, SVM3 55 90.4
Stepwise fit, SVM3 45 90.0
Svmrfe_ori, KNN6 40 89.9
Stepwise fit, SVM4 20 89.2
Svmrfe_ori, KNN2 40 88.8
Entropy, TREE1 55 81
Svmrfe_ori, KNN5 40 88.1

It can be observed, that the 2 most effective combinations
of feature selection and classification schemes are for all cases
and participants are the (stepwise fit, AdaBoost (max split 100,
learning rate 0.5, learning epochs 600), 45 selected features)
with a classification accuracy of 94.36%, the (Wilcoxon,
gaussian SVM (kernel scale 5, constraint 10) with an accuracy
of 91.88%. For the case of Adaboost, the high performance
will most likely come at the cost of high variance (overfitting),
meaning that new data will not perform equally well.

I. Classification

The selected features subset was evaluated in terms of its
ability to discriminate between non-stress and stress. A 10-fold
cross-validation technique on a subject basis (which is closer
to what a stress detector system is summoned to perform) was
used with the classifiers listed in table III and the parameters
determined in IV-H. The classification results for the social
exposure and mental tasks phase are summarized in Table V.

It can be observed that the best achieved accuracies are
84.8% using the SVM1 classifier for social exposure and
74.5% for mental tasks using the gaussian SVM classifier.

J. Evaluation of ordinal modelling

Then, the pairwise transformation was applied to the data
as described in Section IV-D. This transformation takes into
consideration the baseline values (neutral state) of each par-
ticipant, thus addresses the issue of inter-subject variability
which is a common issue in affective studies like the present
study. The effect of the transformation on the data distribution
of 4 participants is presented in Figure 4.

Fig. 4. Visualization of the effect of the pairwise transformation on the 2 top-
ranked features MCEP0 and peak slope of 4 participants for neutral (blue)
and stress (red) state.

It is clear, that the transformation increases the separability
of data taking into account the differential nature of stress
response in relation to the neutral states of each participant.

Following the same pipeline, the classification accuracies
for the social exposure and mental tasks are presented in Table
VI.

It can be observed that using the pairwise transformation,
the classification accuracies are significantly improved leading
to a best achieved accuracy of 95.0% for social exposure using
SVM6 (Gaussian SVM) and 85.9% for mental tasks using the
SVM5 (Gaussian SVM).

V. DISCUSSION

In this study, we investigate the most robust vocal features
involved in stress conditions and propose a ranking methodol-
ogy for the construction of the stress model. We identified the
most relevant features which are MCEP0, peak slope, vowel
space, VAD for all corpus. However, it seems that some fea-
tures are gender-specific as NAQ, MDQ and HMPDD9 appear
to be significant only for female voices, while HMPDM13

seems to be important only for male speakers.
The proposed methodology follows a pipeline of identifica-

tion and selection of the most relevant to stress features, clas-
sification and hyperparameter optimization for the selection of
the final stress model. Using this methodology, the proposed
system yielded a best subject basis 10-fold cross-validation
classification accuracy of 84.8% using SVM1 classifier for
social exposure and 74.5% for mental tasks using the Gaussian
SVM classifier.



TABLE V
SUBJECT BASIS 10-FOLD CROSS-VALIDATION CLASSIFICATION PERFORMANCES FOR SOCIAL EXPOSURE (TASKS 2,3) AND

MENTAL TASKS (TASKS 6,7,8)

Social exposure Mental tasks
Classifiers Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

(%) (%) (%) (%) (%) (%)

SVM1 84.8 71.6 90.7 70.7 80.6 50.8
SVM2 83.3 76.1 86.4 72.9 77.7 63.9
SVM3 81.2 76.3 83.4 72.4 75.9 64.6
SVM4 69.6 0.0 100.0 66.2 100 0.1
SVM5 84.3 71.8 89.8 74.5 81.1 61.3
SVM6 84.4 62.0 94.0 71.8 83.5 48.2
LDA 71.6 61.9 76.0 61.4 62.8 58.2
QDA 69.5 0.0 100.0 66 100 0
KNN1 72.3 68.8 73.7 63.1 63.5 62.1
KNN2 77.9 67.4 82.6 66.3 64.5 69.8
KNN3 79.9 60.6 88.3 70.6 75 61.7
KNN4 78.6 65.4 84.5 68.4 74.2 57.1
TREE1 75.4 63.9 80.5 69.4 75.9 56.6
TREE2 79.6 61.1 87.7 70.2 78.7 53.7
TREE3 76.6 51.5 87.4 71.3 78 58.7
ENS1 79.0 64.9 85.0 72.1 80.7 55.5
ENS2 79.3 64.3 85.9 71.9 81.7 52.1
ENS3 83.6 60.2 93.8 71.2 88 38.4
ENS4 72.6 22.9 94.3 64.9 85.8 24.3
ENS5 76.9 71.1 79.4 71.5 74.1 66.6

Then, the pairwise transformation was employed in order
to address the issue of inter-subject variability and to provide
appropriate normalization for the analysis used. Using this
technique, the discriminatory ability of the proposed system
and the classification results were improved significantly.
Specifically, it yielded a best subject basis 10-fold cross-
validation classification accuracy of 95.0% for social exposure
using SVM6 (Gaussian SVM) and 85.9% for mental tasks
using the SVM5 (Gaussian SVM). A point of concern about
the method is that, for each new subject (speaker) introduced,
its corresponding baseline (neutral) speech segments have to
be available in order for the transformation to take place.

It can be deduced that ordinal modelling can be an effective
tool in stress-related studies like this taking into account
a personalized baseline for each participant, addressing the
crucial issue of inter-subject variability.
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